\qquad

8.7 - Tangent, Sine, and Cosine (Part 1)

Use this helpful mnemonic to remember the following ratios: Oscar Has A Heap Of Apples.

Note: The trigonometric ratios hold only for right triangles.

Given a right triangle find each trigonometric ratio. Leave your answer as a fraction. The first three have been done for you.

$\sin A=\frac{4}{5}$	$\sin B=$
$\cos A=\frac{3}{5}$	$\cos B=$
$\tan A=\frac{4}{3}$	$\tan B=$

2.

$\sin A=$	$\sin B=$
$\cos A=$	$\cos B=$
$\tan A=$	$\tan B=$

Find the trigonometric ratio for each of the right triangles. Leave your answer as simplified fraction and a decimal. Round your answer to 4 decimal places.
3.

$\sin 30^{\circ}=\quad=$	$\sin 60^{\circ}=\quad=$	
$\cos 30^{\circ}=$	$=$	$\cos 60^{\circ}=\quad=$
$\tan 30^{\circ}=$	$=$	$\tan 60^{\circ}=\quad=$

4.

$\sin \mathrm{D}=$	$=$	$\sin \mathrm{G}=\quad=$
$\cos \mathrm{D}=$	$=$	$\cos \mathrm{G}=$
$\tan \mathrm{D}=$	$=$	$\tan \mathrm{G}=$
	$=$	

Using the Trigonometric Table

Find the trigonometric ratio of the following using your trigonometric table.
5. $\sin 30^{\circ}=$ \qquad
6. $\cos 45^{\circ}=$ \qquad
7. $\sin 60^{\circ}=$ \qquad
8. $\tan 45^{\circ}=$ \qquad
9. $\cos 22^{\circ}=$ \qquad
10. $\tan 48^{\circ}=$ \qquad

Using the trigonometric table, find the closest whole degree measure that will give you the following trigonometric ratio.
11. $\cos x=.7660$
12. $\tan x=.4040$
13. $\sin x=.9520$
14. $\sin \theta=.8000$
15. $\cos \theta=\frac{1}{2}$
16. $\tan \theta=\frac{3}{4}$
17. $\sin \theta=\frac{\sqrt{3}}{2}$
18. $\cos \theta=\frac{\sqrt{2}}{2}$

Using your calculator, find the angle with the given trigonometric. Round your answer to the nearest degree.
19. $\quad \cos x=\frac{7}{19}$
20. $\tan x=\frac{101}{90}$
21. $\quad \sin x=\frac{20}{21}$
22. $\cos x=\frac{45}{76}$
23. $\tan x=\frac{15}{4}$
24. $\quad \sin x=\frac{8}{99}$

